On a new Sheffer class of polynomials related to normal product distribution
نویسندگان
چکیده
منابع مشابه
A Simpler Characterization of Sheffer Polynomials
We characterize the Sheffer sequences by a single convolution identity
متن کاملToda Chain, Sheffer Class of Orthogonal Polynomials and Combinatorial Numbers
A classification of Hankel determinant solutions of the restricted Toda chain equations is presented through polynomial Ansatz for moments. Each solution corresponds to the Sheffer class orthogonal polynomials. In turn, these solutions are equivalent to solutions with separated variables in Toda chain. These solutions lead naturally to explicit Hankel determinants of some combinatorial numbers.
متن کاملMonomiality principle, Sheffer-type polynomials and the normal ordering problem
We solve the boson normal ordering problem for ( q(a†)a+ v(a†) )n with arbitrary functions q(x) and v(x) and integer n, where a and a† are boson annihilation and creation operators, satisfying [a, a†] = 1. This consequently provides the solution for the exponential e †)a+v(a†)) generalizing the shift operator. In the course of these considerations we define and explore the monomiality principle...
متن کاملBoson Normal Ordering via Substitutions and Sheffer-type Polynomials
We solve the boson normal ordering problem for (q(a)a + v(a)) with arbitrary functions q and v and integer n, where a and a are boson annihilation and creation operators, satisfying [a, a] = 1. This leads to exponential operators generalizing the shift operator and we show that their action can be expressed in terms of substitutions. Our solution is naturally related through the coherent state ...
متن کاملOn a class of polynomials related to Barker sequences
For an odd integer n > 0, we introduce the class LPn of Laurent polynomials P (z) = (n+ 1) + n ∑ k=1 k odd ck(z k + z−k), with all coefficients ck equal to −1 or 1. Such polynomials arise in the study of Barker sequences of even length, i.e., integer sequences having minimal possible autocorrelations. We prove that polynomials P ∈ LPn have large Mahler measures, namely, M(P ) > (n + 1)/2. We co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theory of Probability and Mathematical Statistics
سال: 2019
ISSN: 0094-9000,1547-7363
DOI: 10.1090/tpms/1062